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Abstract
Alzheimer’s disease gradually affects several components including the cerebral

dimension with brain atrophies, the cognitive dimension with a decline in various

functions, and the functional dimension with impairment in the daily living activities.

Understanding how such dimensions interconnect is crucial for Alzheimer’s disease

research. However, it requires to simultaneously capture the dynamic and multidi-

mensional aspects and to explore temporal relationships between dimensions. We

propose an original dynamic structural model that accounts for all these features.

The model defines dimensions as latent processes and combines a multivariate linear

mixed model and a system of difference equations to model trajectories and temporal

relationships between latent processes in finely discrete time. Dimensions are simul-

taneously related to their observed (possibly multivariate) markers through nonlinear

equations of observation. Parameters are estimated in the maximum likelihood frame-

work enjoying a closed form for the likelihood. We demonstrate in a simulation study

that this dynamic model in discrete time benefits the same causal interpretation of

temporal relationships as models defined in continuous time as long as the discretiza-

tion step remains small. The model is then applied to the data of the Alzheimer’s

Disease Neuroimaging Initiative. Three longitudinal dimensions (cerebral anatomy,

cognitive ability, and functional autonomy) measured by six markers are analyzed, and

their temporal structure is contrasted between different clinical stages of Alzheimer’s

disease.
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1 INTRODUCTION

Dementia is a general syndrome characterized by a long term
and gradual decrease in the ability to think and remember
with consequences on the person’s daily functioning. It rep-
resents a pressing public health problem with an estimated
worldwide prevalence of 46.8 millions cases and health care

burden with US $ 817.9 billions in 2015 (Wimo et al., 2017).
Alzheimer disease (AD), the most common form of demen-
tia (60%-80% of the cases, Reitz and Mayeux (2014)), gradu-
ally affects multiple components long before clinical diagno-
sis with brain atrophies, cognitive decline in various functions
(memory, language, orientation in space and time, etc.), and
loss of autonomy in daily living activities.
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Although essential for the assessment of compounds and
more generally for AD research, knowledge of the natural his-
tory of AD and its progression is still imprecise. Theoretical
schemes have highlighted its expected dynamic and multidi-
mensional aspects. For instance, Jack et al. (2013) hypoth-
esized a sequence with the accumulation of proteins in the
brain (amyloid-𝛽 and 𝜏 proteins), the atrophy of brain regions
(eg, hippocampus), and then clinical manifestations with cog-
nitive and functional declines on which dementia diagnosis
currently relies. However, this theory is hard to translate into
a statistical model because it requires combining multidimen-
sional and dynamic aspects and exploring temporal relation-
ships between dimensions.

As in other medical contexts, the dynamic aspect of
AD has been mostly apprehended using mixed models in
which one dimension is analyzed according to time and
covariates (Amieva et al., 2008; Donohue et al., 2014). This
approach naturally handles dynamic processes by modeling
in continuous time the process underlying the repeated
discrete observations. To emphasize the distinction between
the true process of interest from its noisy observations, mixed
models can be split into a structural model that analyzes the
latent process over time and equations of observations which
simultaneously link the unobserved quantity to the noisy
observed outcomes at each visit (Proust-Lima et al., 2013).
With such split, mixed models can treat one or more markers
indiscriminately, as long as they measure the same latent
quantity. This is particularly useful for dimensions such as
cognition measured by a battery of neuropsychological tests
or cerebral anatomy measured by regional volumes.

To understand how dimensions are inter-related in AD,
some have explored predetermined relationships by exam-
ining change over time of one biomarker according to
another one and assumed the latter was observed without
measurement error (eg, Landau et al., 2011; Han et al.,
2012). This approach quantifies temporal relationships but it
relies on a specific a priori determined sequence and does
not consider all biomarkers as continuous processes. Oth-
ers used bivariate mixed models to dynamically model two
dimensions and account for their correlation through cor-
related random effects (eg, Mungas et al., 2005; Robitaille
et al., 2012). However such models remain descriptive; they
account for the correlation between the markers but do not
allow to distinguish the influence of each marker on the
other.

Temporal asymmetric relationships between processes
have been mainly apprehended with dynamic Bayesian
networks (DBN), dynamic structural equations modeling
(DSEM), and cross-lagged models (CLM) (Song et al., 2009;
Hamaker et al., 2015). These approaches extend the concept
of directed acyclic graphs (Greenland, 2000) to longitudinal
data by modeling temporal relationships between successive

states of a network of processes. Although they account for
the longitudinal data structure and the measurement sequence,
these methods have two main drawbacks that this contribu-
tion intends to circumvent. First, the definition of the model
most often depends on the discrete visit process, so that time
associations are limited to those between successive observed
visits (Hamaker et al., 2015; Kuiper & Ryan, 2018; Voelkle
et al., 2018). This can lead to biased results in case of unequal
time intervals. Even when observations are equally spaced
(generally in grossly discrete time), or when the time elapsed
between visits is taken into account through time-dependent
parameters, the estimated lagged effects are still specific to the
discrete time intervals used in the study and spurious causal
temporal associations might appear as recently demonstrated
(Aalen et al., 2016). The second and main drawback of these
methods is that they quantify the association between succes-
sive levels of the processes, while we are mainly interested
by the influence of each process on the subsequent change of
other processes. Indeed the dynamic view of causality seeks
local dependence structures linking the network of processes
to its infinitesimal subsequent change over time (Aalen &
Frigessi, 2007; Didelez, 2008; Commenges & Gégout-Petit,
2009) in order to retrieve the mechanism which explains how
the system changes as time changes (Voelkle et al., 2018).
Local dependence structures can be naturally investigated
with mechanistic models which relate a system of processes
over time using differential equations. Proposed notably in
HIV studies (Prague et al., 2017), they allow retrieving causal
associations between disease components. Yet mechanistic
models are numerically very demanding so that their applica-
tion to complex diseases such as AD is compromised. In addi-
tion, they require precise biological knowledge which lacks
for AD.

Our objective is thus to propose a statistical model that
simultaneously describes the dynamics of multiple dimen-
sions involved in AD and assesses their temporal relation-
ships similarly as in a mechanistic model but with much less
numerical complexity. We consider a system of latent dimen-
sions possibly observed through one or several longitudinal
markers. We define a set of difference equations to model the
change over a discretized time of the system according to its
previous state. In contrast with other methods (DBN, DSEM,
CLM), this discretization step is disconnected from the obser-
vation process and can be finely chosen. As discretization
might still distort the causal interpretations of temporal rela-
tionships compared to a model in continuous time, we specif-
ically evaluate the impact of discretization on the temporal
influence structure in a simulation study. The methodology is
applied to the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database to explore the temporal structure between
cerebral, cognitive, and functional dimensions at different
stages of AD.
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2 MOTIVATING DATA

Data were obtained from the ADNI database (adni.
loni.usc.edu). The ADNI was launched in 2003 with
the primary goal to test whether serial magnetic resonance
imaging (MRI), positron emission tomography, other biolog-
ical markers, and clinical and neuropsychological assessment
could be combined to measure the progression of mild
cognitive impairment (MCI) and early AD. We focused on
the ADNI 1 phase (Mueller et al., 2005), a multisite obser-
vational study that included N≈800 individuals aged 55-90
enrolled in three stages of progression to AD: normal aging
(CN; N ≈ 200), MCI (N ≈400), and diagnosed Alzheimer’s
disease (dAD, N ≈200). Participants were followed-up every
6 months up to 3 years for CN and MCI groups and up to
2 years for the dAD group (except at month 18 for dAD
and CN, and at month 30 for CN and MCI). At each visit,
information was collected, including for the present work,
volumes of brain regions measured by MRI, a battery of 19
cognitive scores, and a functional assessment.

3 METHODOLOGY

3.1 Structural model for the system of latent
processes

Consider a multivariate latent process 𝚲𝒊(𝑡)𝑡≥0 (with 𝚲𝒊(𝑡) =
(Λ𝑑

𝑖
(𝑡))⊤

𝑑=1,…,𝐷
) representing a system of 𝐷 dimensions (eg,

𝐷 = 3 for cerebral anatomy, cognitive ability, and func-
tional autonomy dimensions in AD) for individual 𝑖 with 𝑖 =
1,… , 𝑁 . We assume 𝚲𝒊(𝑡)𝑡≥0 is defined at discrete times 𝑡𝑗 =
𝑗 × 𝛿 with 𝑗 ∈ 𝜏 = {0, 1,… , 𝐽}, and 𝛿 a constant discretiza-
tion step. Let us denote Δ𝚲𝒊(𝑡𝑗 + 𝛿) = 𝚲𝒊(𝑡𝑗 + 𝛿) − 𝚲𝒊(𝑡𝑗)
the change of the system between two successive times and
Δ𝚲𝒊(𝑡𝑗+𝛿)

𝛿
the rate of change of the system.

To make explicit the modeling of the temporal relation-
ships, we split the structural model into two multivariate lin-
ear mixed submodels for (i) the level of the processes at base-
line 𝚲𝒊(0) and (ii) the rate of change of the system over time
Δ𝚲𝒊(𝑡𝑗+𝛿)

𝛿
using difference equations:{

𝚲𝒊(0) = 𝑿𝟎
𝒊
𝜷 + 𝒖𝒊

Δ𝚲𝒊(𝑡𝑗+𝛿)
𝛿

= 𝑿𝒊(𝑡𝑗 + 𝛿)𝜸 +𝒁𝒊(𝑡𝑗 + 𝛿)𝒗𝒊 +𝑨𝒊,𝜹(𝑡𝑗)𝚲𝒊(𝑡𝑗)

(1)

where 𝑿𝟎
𝒊

is the 𝐷 × 𝑝0-matrix of covariates associated with
the 𝑝0-vector of fixed effects 𝜷 and 𝒖𝒊 is the 𝐷-vector of indi-
vidual random intercepts 𝑢𝑑

𝑖
in the initial system 𝚲𝒊(0). The

(𝐷 × 𝑝)-matrix 𝑿𝒊 and the (𝐷 × 𝑞)-matrix 𝒁𝒊 include time-
dependent covariates associated with the 𝑝-vector of fixed
effects 𝜸 and the 𝑞-vector (𝑞 =

∑𝐷
𝑑=1 𝑞𝑑) of individual random

effects 𝒗𝒊 = (𝑣𝑑
𝑖

⊤)𝑑=1,…,𝐷, respectively. 𝑨𝒊,𝜹 is the 𝐷 ×𝐷-
matrix of temporal influences.

For each process Λ𝑑
𝑖
, the (𝑞𝑑 + 1) vector of individ-

ual random effects (𝑢𝑑
𝑖
, 𝑣𝑑

𝑖

⊤)
⊤

is assumed to have a multi-
variate normal distribution with variance-covariance matrix⎛⎜⎜⎝
𝑏𝑑𝑢

2
𝑩𝒅
𝒖𝒗

𝑩𝒅
𝒖𝒗

⊤
𝑩𝒅
𝒗

⎞⎟⎟⎠, where 𝑩𝒅
𝒖𝒗

and 𝑩𝒅
𝒗

are unstructured. We

assume that random effects may be correlated within each
process 𝑑 (to take into account interindividual variability in
each process trajectory) and between processes at baseline
(to take into account the possible within-individual correla-
tion between processes due to anterior dependencies). Other
correlations between random effects are kept null to ensure
that the temporal relationships are entirely captured by matrix
𝑨𝒊,𝜹. Consequently, the entire (𝐷 + 𝑞)-vector of individual
random effects𝒘𝒊 = (𝒖⊤

𝒊
, 𝒗⊤

𝒊
)⊤ has a multivariate normal dis-

tribution,

𝒘𝑖 ∼ 

((
𝟎
𝟎

)
,𝑩 =

(
𝑩𝒖 𝑩𝒖𝒗

𝑩⊤
𝒖𝒗

𝑩𝒗

))
,

with 𝑩𝒖 the variance-covariance matrix of 𝒖𝒊, 𝑩𝒗 the D-block
diagonal matrix with 𝑑th block 𝑩𝒅

𝒗
, and 𝑩𝒖𝒗 the 𝐷 × 𝑞 matrix

with 𝑑th row
(
𝑶∑𝑑−1

𝑙=1 𝑞𝑙
, 𝑩𝒅

𝒖𝒗
, 𝑶∑𝐷

𝑙=𝑑+1 𝑞𝑙

)
, where 𝑶𝑥 is the

𝑥-row vector of zeros. In the estimation process,𝑩 is replaced
by its Cholesky decomposition: 𝑩 = 𝑳𝑳⊤, where 𝑳 is a (𝐷 +
𝑞) × (𝐷 + 𝑞) lower triangular matrix.

As in any latent variable model, the dimensions of the latent
processes have to be defined to reach identifiability. Since we
do not want to constrain the measurement models (in Sec-
tion 3.2), we chose to standardize the latent processes at base-
line by excluding intercepts from 𝑿𝟎

𝒊
(ie, the processes have

zero mean in the reference group at baseline) and fixing the
variances of 𝒖𝒊 at one (𝑏𝑑𝑢 = 1, ∀𝑑 ∈ {1,… , 𝐷}).

The temporal influences between processes are modeled
through the𝐷 ×𝐷-matrix of time-dependent effects𝑨𝒊,𝜹(𝑡𝑗):

𝑨𝒊,𝜹(𝑡𝑗) =

⎛⎜⎜⎜⎜⎜⎝

𝑎𝑖,11(𝑡𝑗) … 𝑎𝑖,1𝑑(𝑡𝑗) … 𝑎𝑖,1𝐷(𝑡𝑗)
⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑖,𝑑1(𝑡𝑗) … 𝑎𝑖,𝑑𝑑(𝑡𝑗) … 𝑎𝑖,𝑑𝐷(𝑡𝑗)
⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑖,𝐷1(𝑡𝑗) … 𝑎𝑖,𝐷𝑑(𝑡𝑗) … 𝑎𝑖,𝐷𝐷(𝑡𝑗)

⎞⎟⎟⎟⎟⎟⎠
.

This matrix captures the directed temporal influences between
latent processes at time 𝑡𝑗 and subsequent rates of change
of latent processes between times 𝑡𝑗 and 𝑡𝑗 + 𝛿. Specifically,
coefficient 𝑎𝑖,𝑑𝑑′ (𝑡𝑗) quantifies the temporal effect of pro-
cess 𝑑′ at time 𝑡𝑗 on process 𝑑. Each effect can be mod-
eled according to time/covariates through a linear regression
𝑎𝑖,𝑑𝑑′ (𝑡𝑗) = 𝑹⊤

𝑖
(𝑡𝑗)𝜶𝑑𝑑′ , where 𝑹𝒊(𝑡𝑗) is a r-vector of time-

dependent covariates associated with the r-vector of regres-
sion coefficients 𝜶𝒅𝒅′

⊤ = (𝛼𝑚
𝑑𝑑

′ )⊤𝑚=0,(𝑟−1).
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When the discretization step is not too large, the temporal
influences intend to have the same causal interpretations as
those of a model in continuous time (see Simulation Study 2).

3.2 Measurement models of the longitudinal
markers

Consider K (𝐾 ≥ 𝐷) continuous longitudinal markers 𝒀𝒊𝒋 =
(𝑌𝑖𝑗𝑘)⊤𝑘=1,…,𝐾

that have been measured for subject 𝑖 at (𝑛𝑖 +
1) continuous times 𝑡∗

𝑖𝑗𝑘
∈ [𝑡𝑗 , 𝑡𝑗+1) with 𝑡𝑗 the corresponding

discretized time and 𝑗 ∈ 𝜏𝑖, with 𝜏𝑖 being any subset of 𝜏 of
length (𝑛𝑖 + 1). By allowing intermittent missing observations
in Y and 𝜏𝑖 ⊂ 𝜏, the model handles observations sparser than
the grid of discretized times.

Following Proust-Lima et al. (2013), we assume that the
latent process 𝚲𝒅

𝒊
is the underlying common factor of 𝐾𝑑

markers (𝐾 =
∑𝐷

𝑑=1𝐾𝑑) and we note 𝑑 the set of marker
subscripts associated with latent process Λ𝑑

𝑖
. We assume that

a marker measures only one latent process.
The link between a marker and its underlying latent process

is defined by a marker-specific measurement model. If marker
𝑌𝑖𝑗𝑘 is Gaussian, the measurement model is a linear equation:

𝑌𝑖𝑗𝑘 − 𝜂0𝑘

𝜂1𝑘
= 𝑌𝑖𝑗𝑘 = Λ𝑑

𝑖 (𝑡𝑗) + 𝜖𝑖𝑗𝑘, ∀𝑘 ∈ 𝑑and ∀𝑗 ∈ 𝜏𝑖,

(2)

where the vector of transformation parameters
𝜼𝒌 = (𝜂0𝑘, 𝜂1𝑘)⊤ is used to get the standardized form
𝑌𝑖𝑗𝑘 of the marker and 𝜖𝑖𝑗𝑘 are independent Gaussian errors
with variance 𝜎2

𝑘
. In the more general case of a continu-

ous marker (possibly non-Gaussian), one may consider a
nonlinear observation equation:

𝐻𝑘(𝑌𝑖𝑗𝑘; 𝜼𝒌) = 𝑌𝑖𝑗𝑘 = Λ𝑑
𝑖 (𝑡𝑗) + 𝜖𝑖𝑗𝑘, ∀𝑘 ∈ 𝑑and ∀𝑗 ∈ 𝜏𝑖,

(3)

where the link transformation 𝐻𝑘 comes from a family of
monotonic increasing and continuous functions parameter-
ized with 𝜼𝒌. Again 𝑌𝑖𝑗𝑘 is the transformed marker, and 𝜖𝑖𝑗𝑘
are independent Gaussian errors with variance 𝜎2

𝑘
. The link

transformation 𝐻𝑘 can be defined from a basis of I-splines
(which are integrated M-splines; Ramsay, 1988) in associa-
tion with positive coefficients, thus providing an increasing
bijective flexible transformation. We used here a quadratic I-
splines basis with 𝑝𝑘 internal knots, (I𝒎)𝑚=1,𝑝𝑘+3, so that

𝐻𝑘(𝑌𝑖𝑗𝑘; 𝜼𝒌) = 𝑌𝑖𝑗𝑘 = 𝜂0𝑘 +
𝑝𝑘+3∑
𝑚=1

𝜂2
𝑚𝑘
I𝒎(𝑌𝑖𝑗𝑘), (4)

with (𝜂𝑚𝑘)𝑚=0,𝑝𝑘+3 the vector of parameters of the transforma-
tion. Since we constrained the latent processes dimensions, 𝜂𝑘
does not need to be constrained to reach model identifiability.

In the following, we denote 𝚺 = diag((𝜎2
𝑘
)𝑘=1,…,𝐾 ) the

diagonal variance matrix of the vector of errors 𝝐𝒊𝒋 =
(𝜖𝑖𝑗𝑘)⊤𝑘=1,…,𝐾

and 𝜼 = (𝜼⊤
𝒌
)⊤{1,…,𝐾}, the total vector of trans-

formation parameters for the 𝐾 markers. The vector of trans-
formed markers 𝒀𝒊𝒋 is mapped to the system of latent pro-
cesses 𝚲𝒊(𝑡𝑗) through a 𝐾 ×𝐷 matrix 𝑷 with element (𝑘, 𝑑)
equal to 1 if marker 𝑘 measures latent process 𝑑 and zero
otherwise:

𝒀𝒊𝒋 = 𝑷𝚲𝒊(𝑡𝑗) + 𝝐𝒊𝒋 . (5)

In practice, the observation process may include intermittent
missing observations for a subset of markers or for all the
markers at any occasion 𝑗 ∈ 𝜏𝑖, so that 𝐾∗

𝑖𝑗
≤ 𝐾 markers are

actually observed at occasion 𝑗 for subject 𝑖. Following the
mixed model theory, we assume that observations are missing
at random and note 𝒀 ∗

𝒊𝒋
the transformations of the actual 𝐾∗

𝑖𝑗
-

vector of observed markers 𝒀 ∗
𝒊𝒋

at occasion 𝑗. The model link-

ing the processes 𝚲𝒊(𝑡𝑗) to the transformed markers 𝒀 ∗
𝒊𝒋

can
be easily adapted to the presence of intermittent missing data
by considering a 𝐾∗

𝑖𝑗
×𝐾 observation matrix 𝑴𝒊𝒋 , where ele-

ment (𝑘∗, 𝑘) equals 1 if marker 𝑘 is the 𝑘∗th observed marker
at occasion 𝑗 and 0 if not for 𝑘 = 1,… , 𝐾 and 𝑘∗ = 1,… , 𝐾∗

𝑖𝑗
:

𝒀 ∗
𝒊𝒋
= 𝑴𝒊𝒋𝑷𝚲𝒊(𝑡𝑗) + 𝝐∗

𝒊𝒋
(6)

with 𝝐∗𝑖𝑗 the vector of independent Gaussian errors with
variance-covariance matrix 𝑴𝒊𝒋𝚺𝑴𝒊𝒋

⊤.

3.3 Estimation by maximum likelihood

3.3.1 Distribution of the latent processes and
transformed observations

Although the model was introduced through two submodels,
the marginal distribution of latent processes (and by extension
of the transformed observations) can be easily computed. By
recurrence, the structural model (1) can be rewritten:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝚲𝒊(𝑡𝑗) = 𝑿𝟎
𝒊
𝜷 + 𝒖𝑖 if 𝑗 = 0

𝚲𝒊(𝑡𝑗) = 𝑨̃𝒊,𝜹(0)
{
𝑿𝟎
𝒊
𝜷 + 𝒖𝒊

}
+ 𝛿

{
𝑿𝒊(𝑡𝑗)𝜸 +𝒁𝒊(𝑡𝑗)𝒗𝒊

}
if 𝑗 = 1

𝚲𝒊(𝑡𝑗) =
𝑗−1∏
𝑙=0

𝑨̃𝒊,𝜹(𝑡𝑙)
{
𝑿𝟎
𝒊
𝜷 + 𝒖𝒊

}
+ 𝛿

{
𝑿𝒊(𝑡𝑗)𝜸 +𝒁𝒊(𝑡𝑗)𝒗𝒊

}
if 𝑗 > 1

+ 𝛿

𝑗−1∑
𝑠=1

𝑗−1∏
𝑙=𝑠

𝑨̃𝒊,𝜹(𝑡𝑙)

×
{
𝑿𝒊(𝑡𝑠)𝜸 +𝒁𝒊(𝑡𝑠)𝒗𝒊

}
,

(7)
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where 𝑡𝑗 = 𝑗 × 𝛿 for 𝑗 ∈ 𝜏 and 𝑨̃𝒊,𝜹(𝑡𝑗) = 𝑰𝐷 + 𝛿𝑨𝒊,𝜹(𝑡𝑗).
By introducing 𝚿𝒊,𝜹(𝑡0, 𝑗, 𝑠) for 𝑡0 ≥ 0 and 𝑠 ≤ 𝑗 so that

𝚿𝒊,𝜹(𝑡0, 𝑗, 𝑠) =
⎧⎪⎨⎪⎩
𝑰𝐷, if 𝑠 = 𝑗
𝑗−1∏
𝑙=𝑠

𝑨̃𝒊,𝜹(𝑡0 + 𝑡𝑙) if 𝑠 < 𝑗.
(8)

Equation (7) can be rewritten as

𝚲𝒊(𝑡𝑗) = 𝚿𝒊,𝜹(0, 𝑗, 0)
(
𝑿𝟎
𝒊
𝜷 + 𝒖𝒊

)
+

[
𝛿

𝑗∑
𝑠=1

𝚿𝒊,𝜹(0, 𝑗, 𝑠)
{
𝑿𝒊(𝑡𝑠)𝜸 +𝒁𝒊(𝑡𝑠)𝒗𝒊

}]
1{𝑗>0}.

(9)

From this equation, it can be seen that the structural model
is a specific nonlinear mixed model depending on individual
random effects 𝒘𝒊 = (𝒖⊤

𝒊
, 𝒗⊤

𝒊
)⊤. The vector 𝚲𝑖(𝑡𝑗) has a mul-

tivariate normal distribution with expectation 𝝁𝚲𝒊𝒋
and vari-

ance covariance matrix 𝑽𝚲𝒊𝒋𝒋
= var{𝚲𝑖(𝑡𝑗)}, and the vector

𝚲𝑖 = (𝚲𝑖(𝑡𝑗)⊤)⊤𝑗∈𝜏 has a multivariate normal distribution with

expectation 𝝁𝚲𝒊
= (𝝁⊤𝚲𝒊𝒋

)⊤
𝑗∈𝜏 and variance-covariance matrix

𝑽𝚲𝒊
= (𝑽𝚲𝒊𝒋𝒋′

)(𝑗,𝑗′)∈𝜏2 where

𝝁𝚲𝒊𝒋
= 𝐸

{
𝚲𝒊(𝑡𝑗)

}
= 𝚿𝒊,𝜹(0, 𝑗, 0)𝑿𝟎

𝒊
𝜷

+

{
𝛿

𝑗∑
𝑠=1

𝚿𝒊,𝜹(0, 𝑗, 𝑠)𝑿𝒊(𝑡𝑠)𝜸

}
1{𝑗>0} (10)

and
𝑽𝚲𝒊𝒋𝒋′

= cov
{
𝚲𝒊(𝑡𝑗);𝚲𝒊(𝑡𝑖𝑗′ )

}
= 𝚿𝒊,𝜹(0, 𝑗, 0)𝚿𝒊,𝜹(0, 𝑗′, 0)⊤

+
⎡⎢⎢⎣𝚿𝒊,𝜹(0, 𝑗, 0)𝑩𝒖𝒗

{
𝛿

𝑗′∑
𝑠′=1

𝚿𝒊,𝜹(0, 𝑗′, 𝑠′)𝒁𝒊(𝑡𝑠′ )

}⊤⎤⎥⎥⎦1{𝑗′>0}

+

[{
𝛿

𝑗∑
𝑠=1

𝚿𝒊,𝜹(0, 𝑗, 𝑠)𝒁𝒊(𝑡𝑠)

}
𝑩⊤
𝒖𝒗
𝚿𝑖,𝛿(0, 𝑗′, 0)⊤

]
1{𝑗>0}

+
⎡⎢⎢⎣
{

𝛿

𝑗∑
𝑠=1

𝚿𝑖,𝛿(0, 𝑗, 𝑠)𝒁 𝑖(𝑡𝑠)

}

× 𝑩𝒗

{
𝛿

𝑗′∑
𝑠′=1

𝚿𝑖,𝛿(0, 𝑗′, 𝑠′)𝒁 𝑖(𝑡𝑠′ )

}⊤⎤⎥⎥⎦1{min(𝑗,𝑗′)>0}.

(11)

It can be deduced that the vector of incomplete and trans-
formed data 𝒀 ∗

𝒊𝒋
at occasion 𝑗 is multivariate Gaussian

with expectation 𝝁𝒀 ∗
𝒊𝒋

= 𝑴𝒊𝒋𝑷𝝁𝚲𝒊𝒋
and variance-covariance

matrix 𝑽𝒀 ∗
𝒊𝒋

= 𝑴𝒊𝒋(𝑷𝑽𝚲𝒊𝒋𝒋
𝑷 ⊤ + 𝚺)𝑴⊤

𝒊𝒋
, and the total

vector of incomplete and transformed data 𝒀 ∗
𝒊
= (𝒀 ∗⊤

𝒊𝒋
)⊤
𝑗∈𝜏𝑖

is

multivariate Gaussian with expectation 𝝁𝒀 ∗
𝒊

= (𝝁⊤
𝒀 ∗
𝒊𝒋

)⊤
𝑗∈𝜏𝑖

and

variance-covariance matrix 𝑽𝒀 ∗
𝒊

, a block matrix with 𝑴𝒊𝒋

𝑃𝑉Λ𝑖𝑗𝑗′
𝑃⊤𝑴⊤

𝒊𝒋′
+ (𝑴𝒊𝒋𝚺𝑴⊤

𝒊𝒋′
)1{𝑗=𝑗′} the (𝑗, 𝑗′) block.

3.3.2 Likelihood

As the 𝑁 subjects of the sample are independent,
the log-likelihood of the model is 𝐿(𝑌 ∗; 𝜃) =

∑𝑁
𝑖=1

log{𝑖(𝒀 ∗
𝒊
;𝜽)} with 𝑖(𝒀 ∗

𝒊
;𝜽) the individual contri-

bution to the likelihood. Here, 𝜽 = (𝜷⊤, 𝜸⊤, vec(𝑳)⊤,
(𝜶⊤

𝒅𝒅′
)𝑑,𝑑′∈{1,…,𝐷}2 , (𝜎𝑘)𝑘∈{1,…,𝐾}, 𝜼

⊤)⊤ is the whole vector
of parameters. Using the Jacobian of the link functions 𝐻𝑘

(𝑘 = 1,… , 𝐾), the individual contribution is

𝑖(𝒀 ∗
𝒊
;𝜽) = 𝜙𝑖(𝒀 ∗

𝒊
;𝝁𝒀 ∗

𝒊

,𝑽𝒀 ∗
𝒊

) ×

∏
𝑗∈𝜏𝑖

𝐾∗
𝑖𝑗∏

𝑙=1
𝜅(𝑙)

{
𝐻𝜅(𝑙)

(
𝑌 ∗
𝑖𝑗𝜅(𝑙); 𝜼𝜿(𝒍)

)}
, (12)

where 𝜙𝑖(.;𝝁,𝑽 ) denotes the density function of a multi-
variate Gaussian vector with expectation 𝝁 and variance-
covariance 𝑽 , and 𝜅(𝑙){𝐻𝜅(𝑙)(𝑌 ∗

𝑖𝑗𝜅(𝑙); 𝜼𝜿(𝒍))} denotes the
Jacobian of the link function 𝐻𝜅(𝑙) used to transform
𝑌 ∗
𝑖𝑗𝜅(𝑙), the 𝑙th observed marker at occasion 𝑗 for subject 𝑖.

For instance, with the linear link function defined in (2),
𝜅(𝑙){𝐻𝜅(𝑙)(𝑌 ∗

𝑖𝑗𝜅(𝑙); 𝜂𝜅(𝑙))} = 1
𝜂1𝜅(𝑙)

.

3.3.3 Optimization algorithm and
implementation

The maximum likelihood estimates are obtained using an
extended Levenberg-Marquardt algorithm (Marquardt, 1963)
because of its robustness and good convergence rate. At
each iteration 𝑝, if necessary, the Hessian matrix 𝑯 (𝒑) is
diagonal-inflated to obtain a positive definite matrix 𝑯∗(𝒑),
which is used to update the parameters 𝜽(𝒑+𝟏) = 𝜽(𝒑) −
𝜈(𝑯∗(𝒑))−1𝑼 (𝜽(𝒑)), with 𝑼 (𝜽(𝒑)) the gradient at iteration
𝑝 and 𝜈 the improvement control parameter. Convergence
is reached when ||𝜽(𝒑+𝟏) − 𝜽(𝒑)||2 < 𝜖𝜃 , |𝐿(𝒀 ∗;𝜽(𝒑+𝟏)) −

𝐿(𝒀 ∗;𝜽(𝒑))| < 𝜖𝐿 and 𝑼 (𝜽(𝒑))⊤(𝑯 (𝒑))−1𝑼 (𝜽(𝒑))
𝑛para

< 𝜖𝐻 , with 𝑛para

the total number of parameters. The latter criterion is by far the
most stringent one and specifically targets maximum search
so that 𝜖𝜃 = 𝜖𝐿 = 𝜖𝐻 = 10−3 is small enough to ensure con-
vergence. The variances of the estimators are obtained from
the inverse of 𝑯 (𝒑).

Given the possibly high number of parameters, we first esti-
mate the parameters for each process taken separately, then
we start the maximization of the likelihood of the multivariate
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model from these simple estimates, setting initial values of
the interdimension parameters to zero. The model estimation
is implemented in the R package CInLPN; it combines R and
𝐶++ languages and includes parallel computations.

3.4 Marginal and subject-specific predictions

The goodness of fit of the model can be assessed by com-
paring predictions with observations of the markers in their
transformed scales. From notations defined in Section 3.3.1,
marginal and conditional distributions of the markers are

𝒀𝒊 ∼ 
(
𝑷𝝁𝚲𝒊

,
(
𝑷𝑽𝚲𝒊

𝑷 ⊤ + 𝚺𝒊

))
, (13)

𝒀𝒊
|||𝚲𝒊

∼  (𝑷𝚲𝒊, 𝚺𝒊), (14)

where 𝚺𝒊 is the block-diagonal matrix constituted of 𝑛𝑖
𝚺 blocks.

The marginal (𝒀 (𝑴)
𝒊

) and subject-specific (𝒀 (𝑺𝑺)
𝒊

) predic-
tions in the transformed scales are then, respectively, obtained
by taking the expectations of the marginal and conditional dis-
tributions of the transformed markers at the parameter esti-
mates 𝜃̂ and at the predicted latent processes 𝚲̂𝒊 of𝚲𝒊 given the
observations 𝒀 ∗

𝒊
: 𝚲̂𝒊 = 𝐸(𝚲𝒊|𝒀 ∗

𝒊
) = 𝝁𝚲𝒊

+ 𝑪𝚲𝒊𝒀
∗
𝒊

𝑽 −𝟏
𝒀 ∗
𝒊

(𝒀 ∗
𝒊
−

𝝁𝒀 ∗
𝒊

), where 𝑪𝚲𝒊𝒀
∗
𝒊

= (𝑽𝚲𝒊𝒋𝒋′
𝑷 ⊤𝑴⊤

𝒊𝒋′
)(𝑗,𝑗′)∈𝜏2

𝑖
is the covari-

ance matrix between 𝚲𝒊 and 𝒀 ∗
𝒊

.
Using these individual predictions, one can graphically

compare either the marginal predictions 𝒀 (𝑴) or subject-
specific predictions 𝒀 (𝑺𝑺) averaged within time intervals to
the observations averaged within the same time intervals.
Marginal and subject-specific predictions in the natural scale
of the markers can also be derived from the marginal and con-
ditional distributions by using a Monte-Carlo approximation
(Proust-Lima et al., 2013).

4 SIMULATIONS

We performed two series of simulations to evaluate the esti-
mation program and the impact of time discretization on the
interpretation of 𝑨𝒊,𝜹(𝑡) matrix.

4.1 Simulation study 1: Validation of the
estimation program

4.1.1 Design

To evaluate the estimation program, we generated a system of
two Gaussian processes ((𝚲𝟏(𝑡𝑗))𝑡𝑗≥0 and (𝚲𝟐(𝑡𝑗))𝑡𝑗≥0), with
𝑡𝑗 = 𝑗 × 𝛿, 𝑗 ∈ {0,… , 𝐽}. Each process is measured by one

longitudinal marker (𝒀𝟏 and 𝒀𝟐, respectively), and we consid-
ered two covariates, one continuous𝐶1 and one binary𝐶2. We
defined two scenarios: a covariate-specific structure of tem-
poral influences (Scenario 1) and a time-dependent temporal
influences structure (Scenario 2). In Scenario 1, we assumed
a constant rate of change for the system of latent processes
(with random intercepts and simple effects of both covariates
in the submodels for the initial level and the change over time)
and a structure of temporal influences 𝑨𝒊,𝜹 different for each
level of 𝐶2:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Λ1
𝑖
(0) = 𝛽10 + 𝛽11𝐶1,𝑖 + 𝛽12𝐶2,𝑖 + 𝑢1

𝑖

Λ2
𝑖
(0) = 𝛽20 + 𝛽21𝐶1,𝑖 + 𝛽22𝐶2,𝑖 + 𝑢2

𝑖

ΔΛ1
𝑖
(𝑡𝑗 + 𝛿)
𝛿

= 𝛾10 + 𝛾11𝐶1,𝑖 + 𝛾12𝐶2,𝑖 + 𝑣1
𝑖

+
(
𝛼0
𝑖,11 + 𝛼1

𝑖,11𝐶2,𝑖
)
Λ1
𝑖
(𝑡𝑗)

+
(
𝛼0
𝑖,12 + 𝛼1

𝑖,12𝐶2,𝑖
)
Λ2
𝑖
(𝑡𝑗)

ΔΛ2
𝑖
(𝑡𝑗 + 𝛿)
𝛿

= 𝛾20 + 𝛾21𝐶1,𝑖 + 𝛾22𝐶2,𝑖 + 𝑣2
𝑖

+
(
𝛼0
𝑖,21 + 𝛼1

𝑖,21𝐶2,𝑖
)
Λ1
𝑖
(𝑡𝑗)

+
(
𝛼0
𝑖,22 + 𝛼1

𝑖,22𝐶2,𝑖
)
Λ2
𝑖
(𝑡𝑗)

𝑌𝑖𝑗𝑘 − 𝜂0𝑘

𝜂1𝑘
= Λ𝑘

𝑖 (𝑡𝑗) + 𝜖𝑖𝑗𝑘, 𝑘 = 1, 2,

(15)

where 𝒖𝒊 = (𝑢1
𝑖
, 𝑢2

𝑖
)⊤, 𝒗𝒊 = (𝑣1

𝑖
, 𝑣2

𝑖
)⊤, and (𝒖𝒊⊤, 𝒗𝒊⊤)⊤ ∼

 (0,𝑳𝑳⊤) with 𝑳 such that the random effects are indepen-
dent between dimensions, and 𝜖𝑖𝑗𝑘 ∼  (0, 𝜎2

𝑘
), ∀𝑘 ∈ {1, 2}.

In scenario 2, we considered initial levels adjusted for the
binary covariate 𝐶2, constant rates of change with no adjust-
ment, and temporal influences between two processes𝑨𝒊,𝜹(𝑡𝑗)
that evolved with time:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Λ1
𝑖
(0) = 𝛽10 + 𝛽11𝐶2,𝑖 + 𝑢1

𝑖

Λ2
𝑖
(0) = 𝛽20 + 𝛽21𝐶2,𝑖 + 𝑢2

𝑖

ΔΛ1
𝑖
(𝑡𝑗 + 𝛿)
𝛿

= 𝛾10 + 𝑣1
𝑖
+ 𝑎11(𝑡𝑗)Λ1

𝑖
(𝑡𝑗) + 𝑎12(𝑡𝑗)Λ2

𝑖
(𝑡𝑗)

ΔΛ2
𝑖
(𝑡𝑗 + 𝛿)
𝛿

= 𝛾20 + 𝑣2
𝑖
+ 𝑎21(𝑡𝑗)Λ1

𝑖
(𝑡𝑗) + 𝑎22(𝑡𝑗)Λ2

𝑖
(𝑡𝑗)

𝑌𝑖𝑗𝑘 − 𝜂0𝑘

𝜂1𝑘
= Λ𝑘

𝑖 (𝑡𝑗) + 𝜖𝑖𝑗𝑘, 𝑘 = 1, 2,

(16)

where 𝒖𝒊 = (𝑢1
𝑖
, 𝑢2

𝑖
)⊤, 𝒗𝒊 = (𝑣1

𝑖
, 𝑣2

𝑖
)⊤, and (𝒖⊤

𝒊
, 𝒗⊤

𝒊
)⊤ ∼

 (0,𝑳𝑳⊤) with 𝑳 such that the random effects are
independent between dimensions, and 𝜖𝑖𝑗𝑘 ∼  (0, 𝜎2

𝑘
),

∀ 𝑘 ∈ {1, 2}. Each element of the matrix of temporal
influences 𝑎𝑘𝑘′ (𝑡) is defined from a basis of quadratic
B-splines with one internal knot at the median (𝑺𝒎){𝑚=1,3}
so that 𝑎𝑘𝑘′ (𝑡) = 𝛼0

𝑘𝑘′
+ 𝛼1

𝑘𝑘′
𝑺𝟏(𝑡) + 𝛼2

𝑘𝑘′
𝑺𝟐(𝑡) + 𝛼3

𝑘𝑘′
𝑺𝟑(𝑡),

∀ 𝑘 ≠ 𝑘′ and (𝑘, 𝑘′) ∈ {1, 2}2 (diagonal elements were not
adjusted).
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T A B L E 1 Results of the simulations for scenario 2 (1000 replicates of samples of size 512)

Without missing values With missing valuesa

𝜽 𝜽̂ Biasb ESE ASE CR(%) 𝜽̂ Bias ESE ASE CR(%)
𝛽11 –1.635 –1.644 0.5 0.109 0.108 95.5 –1.644 0.5 0.109 0.109 94.7

𝛽21 –1.784 –1.789 0.2 0.115 0.119 95.7 –1.790 0.3 0.119 0.121 94.8

𝛾10 0.009 0.009 1.4 0.009 0.009 96.0 0.009 1.6 0.009 0.010 95.5

𝛾20 –0.053 –0.053 1.5 0.017 0.017 95.5 –0.053 1.3 0.017 0.018 95.6

L(3,1) 0.032 0.031 3.2 0.009 0.010 95.2 0.031 3.2 0.010 0.010 95.5

L(4,2) –0.011 –0.009 19.5 0.014 0.015 95.4 –0.009 20.5 0.014 0.015 94.7

L(3,3) 0.094 0.094 0.1 0.006 0.006 94.6 0.094 0.3 0.006 0.006 93.9

L(4,4) 0.169 0.169 0.2 0.010 0.011 95.0 0.169 0.1 0.011 0.011 94.7

𝛼011 –0.012 –0.011 8.2 0.008 0.009 95.3 –0.011 8.3 0.009 0.009 95.6

𝛼012 0.115 0.114 0.9 0.018 0.018 93.8 0.113 1.1 0.020 0.020 94.9

𝛼112 –0.092 –0.092 0.3 0.027 0.027 94.9 –0.092 0.6 0.030 0.030 96.4

𝛼212 –0.028 –0.028 3.2 0.015 0.015 94.5 –0.027 4.1 0.017 0.017 95.1

𝛼312 –0.069 –0.069 0.1 0.026 0.026 94.1 –0.069 0.2 0.028 0.029 95.1

𝛼021 0.134 0.135 0.7 0.033 0.034 94.2 0.135 0.4 0.036 0.036 94.8

𝛼121 –0.076 –0.075 0.9 0.052 0.052 93.6 –0.075 1.2 0.058 0.058 94.5

𝛼221 0.024 0.022 11.3 0.031 0.035 95.4 0.023 7.9 0.034 0.034 95.4

𝛼321 –0.140 –0.130 6.8 0.052 0.052 94.2 –0.130 7.0 0.058 0.058 94.0

𝛼022 0.009 0.007 22.2 0.012 0.012 94.8 0.007 21.6 0.013 0.013 94.7

𝜎1 0.376 0.378 0.5 0.013 0.013 94.9 0.378 0.5 0.013 0.013 95.2

𝜎2 0.686 0.688 0.2 0.027 0.026 93.9 0.688 0.3 0.028 0.027 93.6

𝜂01 3.878 3.886 0.2 0.196 0.198 95.1 3.885 0.2 0.196 0.199 94.8

𝜂11 2.678 2.667 0.4 0.087 0.087 95.1 2.667 0.4 0.088 0.088 94.9

𝜂02 2.589 2.591 0.1 0.112 0.114 95.9 2.591 0.1 0.114 0.115 95.3

𝜂12 1.472 1.470 0.1 0.054 0.052 93.5 1.470 0.2 0.056 0.054 93.4

Abbreviations: ASE, the asymptotic standard error; ESE, the empirical standard error; CR, the coverage rate of the 95% confidence interval.
Diagonal elements of the temporal influences matrix were not adjusted for time.
a(15% missing occasions, 7% missing outcomes).
bRelative bias(%).

The design of the simulations and the parameters were
chosen to mimic the ADNI data. Dimensions 1 and 2 were
cerebral anatomy and cognitive ability, each one measured
by a specific composite score. Covariate 𝐶1 represented
the baseline age centered on the mean age in decades
and was generated according to a Gaussian distribution:
𝐶1 ∼  (0, 0.64). Covariate 𝐶2 corresponded to the indi-
cator of group CN versus group MCI. It was generated
according to a Bernoulli distribution with probability 0.37.
We used a discretization step 𝛿 = 1 (ie, 6 months in ADNI 1
data). Markers observations were generated every 6 months
up to 3 years. Thus a subject had seven repeated measures at
occasions 𝑗 ∈ {0, 1,… , 6}. We also considered a design in
which scheduled visits could be missed completely at random
with a probability of 0.15, and when a visit was not missed,
a marker could be missing with a probability of 0.07. For
each design and scenario, we generated 1000 samples of 512
subjects.

4.1.2 Results

Web Table 1 of the Web Appendix B and Table 1 provide the
results of the simulations for scenarios 1 and 2, respectively.
In both settings, all the parameters were correctly estimated
with satisfying coverage rates in the absence of missing data
(left part) and in the presence of missing data (right part).

4.2 Simulation study 2: Impact of the
discretization step on the temporal influence
structure between processes

4.2.1 Design

To formally assess whether the interpretation under the dis-
cretized time was the same as the one obtained under con-
tinuous time, we assessed the type-I error rate associated
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with each nondiagonal element of the matrix of temporal
influences 𝑨 under three discretization steps 𝛿 = 1∕3 (for 2
months), 1∕2 (for 3 months) and 1 (for 6 months) when data
were actually generated under continuous time (approximated
by a step 𝛿 = 0.001). We considered for this a system of three
latent processes ((𝚲𝟏(𝑡𝑗))𝑡𝑗≥0, (𝚲𝟐(𝑡𝑗))𝑡𝑗≥0, and (𝚲𝟑(𝑡𝑗))𝑡𝑗≥0
), with 𝑡𝑗 = 𝑗 × 𝛿, 𝛿 = 0.001. Each process is measured by
one Gaussian repeated marker (𝒀𝟏, 𝒀𝟐, 𝒀𝟑). The processes
have constant rate of change, with no adjustment for covari-
ates and a matrix of temporal influences 𝑨 constant over
time:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ1
𝑖
(0) = 𝛽10 + 𝑢1

𝑖

Λ2
𝑖
(0) = 𝛽20 + 𝑢2

𝑖

Λ3
𝑖
(0) = 𝛽30 + 𝑢3

𝑖

ΔΛ1
𝑖
(𝑡𝑗 + 𝛿)
𝛿

= 𝛾10 + 𝑣1
𝑖
+ 𝑎11Λ1

𝑖
(𝑡𝑗)

+𝑎12Λ2
𝑖
(𝑡𝑗) + 𝑎13Λ3

𝑖
(𝑡𝑗)

ΔΛ2
𝑖
(𝑡𝑗 + 𝛿)
𝛿

= 𝛾20 + 𝑣2
𝑖
+ 𝑎21Λ1

𝑖
(𝑡𝑗)

+𝑎22Λ2
𝑖
(𝑡𝑗) + 𝑎23Λ3

𝑖
(𝑡𝑗)

ΔΛ3
𝑖
(𝑡𝑗 + 𝛿)
𝛿

= 𝛾30 + 𝑣3
𝑖
+ 𝑎31Λ1

𝑖
(𝑡𝑗)

+𝑎32Λ2
𝑖
(𝑡𝑗) + 𝑎33Λ3

𝑖
(𝑡𝑗)

𝑌𝑖𝑗𝑘 − 𝜂0𝑘

𝜂1𝑘
= Λ𝑘

𝑖 (𝑡𝑗) + 𝜖𝑖𝑗𝑘, 𝑘 = 1, 2, 3.

(17)

The simulation model mimicked the ADNI data with cere-
bral anatomy, cognitive ability, and functional autonomy as
dimensions, respectively, measured by a specific composite
score. We estimated the model on the ADNI data with 𝛿 = 1 (6
months) and transformed the estimated parameters to the scale
𝛿 = 0.001 to generate the data in almost continuous time. We
provide in the Web Appendix A the formulas to relate model
components defined under 𝛿 = 1 and 𝛿= 0.001. Elements of
the matrix of temporal influences were set one by one to 0 in
𝛿 = 0.001 scale to evaluate the associated type-I error rate.
Latent processes were generated with a solver from dsolve
package (Soetaert et al., 2010), and observations were derived
every 6 months up to 3 years. We considered each time 1000
samples of 512 subjects.

4.2.2 Results

Table 2 displays the type-I error rates (in percentage) associ-
ated with each nondiagonal element of the matrix of temporal
influences𝑨when estimated with discretization steps 𝛿 = 1/3,
1∕2, and 1. All the type-I error rates are close to the nominal
5% rate (95% interval of expected rates of [3.6, 6.4]with 1000
replicates). We note, however, that with a discretization step
of 𝛿 = 1, the type-I error rates begin to somewhat increase,

T A B L E 2 Type-I error rates (in %) associated with each
nondiagonal element of the matrix of temporal influences 𝑨 when the
matrix of temporal influences is generated approximately in continuous
time (𝛿 = 0.001) and estimated with discretization steps: 𝛿= 1/3, 𝛿=
1/2, 𝛿= 1 for 2, 3, and 6 months, respectively (1000 replicates; expected
95% interval [3.6, 6.4] for the nominal type-I error of 5%)

𝒓̂

Parameter 𝜹 = 𝟏∕𝟑 𝜹 = 𝟏∕𝟐 𝜹 = 𝟏
𝑎12 5.4 4.9 6.5

𝑎13 5.3 5.3 8.6

𝑎21 5.6 6.0 7.5

𝑎23 4.7 6.0 4.1

𝑎31 5.4 5.2 7.1

𝑎32 4.5 4.8 4.8

suggesting that with larger discretization steps, causal inter-
pretations are altered.

5 APPLICATION

Using the ADNI data (Section 2), the application aimed to
describe the decline over time of cerebral anatomy, cognitive
ability and functional autonomy in three clinical stages of AD
(CN, MCI, and dAD) and to quantify the temporal influences
between these dimensions by assessing especially whether
the relationships differ according to the clinical stage. The
dynamic model applied on ADNI is summarized in Figure 1.

5.1 Measures and ADNI sample description

Cerebral anatomy (𝚲𝑨) was defined as the process underlying
the hippocampal volume relative to total intracranial volume
and the mean cortical thickness of nine regions (Freesurfer
version 4.4.0 for longitudinal data) previously identified in a
cortical signature of AD (Dickerson et al., 2008). Global cog-
nitive ability (𝚲𝑪 ) was defined as the process underlying three
cognitive markers of memory, language, and executive func-
tioning, respectively. Each cognitive marker was a composite
score previously identified from the psychometric tests avail-
able in ADNI (Park et al., 2012). Functional autonomy (𝚲𝑭 )
was defined as the process underlying the observed sumscore
of the FAQ (Functional Assessment Questionnaire) composed
of 30 items (Pfeffer et al., 1982). Covariates were the age at
entry (centered around 75.4 and indicated in decades), gender,
educational level (low level if ≤ 12 years vs high level if >12
years), the Apolipoprotein E (APOE) genotype (𝜖4 carrier vs
𝜖4 noncarrier), and the three clinical stages (CN, MCI, dAD)
as defined at inclusion in ADNI (we did not consider possible
changes in stages during follow-up). We selected in the sam-
ple all the subjects who had no missing data for the covariates
and had at least one observation for each dimension during the
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F I G U R E 1 Graph of the dynamic causal model
considered on ADNI 1 data with three dimensions
(labeled 𝚲𝑨 for cerebral anatomy, 𝚲𝑪 for cognitive
ability, and 𝚲𝑭 for functional autonomy). Cerebral
anatomy is measured by two repeated volumes (𝑌hip

and 𝑌cortic for hippocampal volume and mean regional
cortical thickness, respectively), cognitive ability by
three repeated scores (𝑌mem, 𝑌lang, and 𝑌exec for
sumscores in memory, language, and executive
functions, respectively), and functional autonomy by
one repeated score (𝑌FAQ for FAQ scale)

follow-up. The main analysis included 656 subjects (82% of
the initial sample). The sample consisted of 190 (29%) sub-
jects at healthy stage (CN), 322 (49%) subjects at the MCI
stage , and 144 (22%) subjects diagnosed with Alzheimer’s
disease (dAD); 43% were females, 83% had a high educational
level and 49% carried APOE 𝜖4 allele. The mean age at entry
was 75.4 years old (SD = 6.6). The mean number of visits was
five, six, and four for CN, MCI, and dAD subjects, respec-
tively.

5.2 Specification of the dynamic multivariate
model

The initial levels of the processes were adjusted for gen-
der, education, APOE genotype, clinical stage, and age at
baseline. Changes of the processes over time were adjusted
for gender, education, APOE genotype, and clinical stage.
In order to account for the correlations between individ-
ual repeated measures, we included random intercepts on
the initial levels of the processes (correlated between pro-
cesses) and random intercepts on the changes of the processes
over time (independent between processes). The matrix of
temporal influences that captured the interrelations between
processes was constant over time and adjusted for clinical
stage: 𝑎𝑑𝑑′ = 𝛼0

𝑑𝑑′
+ MCI × 𝛼1

𝑑𝑑′
+ dAD × 𝛼2

𝑑𝑑′
, for (𝑑, 𝑑′) ∈

{𝐴,𝐶, 𝐹 }2. To correct the possible departure from normal-
ity of each observed marker, we transformed them using inte-
grated quadratic splines (as in Equation 4) with two internal
knots at the terciles for scores measuring cerebral and cogni-
tive dimensions and with one internal knot at the median for
the functional score.

In the main analysis, we considered a discretization
step of approximately 3 months (𝛿 = 0.23 year) although
observations were sparser as scheduled every 6 months.
The modeling strategy consisted of finding first the best
adjustment for each process taken separately with a signifi-
cance threshold for covariate effects at 25%. Then, the whole
multivariate model was estimated. In secondary analyses, we

reestimated the final model by considering a discretization
step of 1.5 months (𝛿 = 0.125 year) in order to evaluate
whether the interpretations varied with a smaller step.

5.3 Results

5.3.1 Latent process specific trajectories

Estimates of fixed effects, Cholesky’s decomposition param-
eters (for the random effects variance-covariance matrix) and
measurement model parameters are provided in Web Tables 2,
3, and 4 of the Web Appendix C. In summary, older age, male
gender, APOE 𝜖4 carrying, and clinical stages MCI and dAD
were associated with lower cerebral anatomy and lower cog-
nitive ability levels at baseline. Higher education was asso-
ciated with lower cerebral anatomy level but associated with
higher cognitive ability level at baseline. Only clinical stages
MCI and dAD were associated with lower functional auton-
omy level at baseline. Adjusted for other dimension levels,
APOE 𝜖4 carrying was associated with steeper declines in
cerebral anatomy, cognitive ability, and functional autonomy;
and higher education was associated with steeper cerebral
anatomy decline and smaller cognitive ability decline. Web
Figure 1 of the Web Appendix C depicts the expected trajec-
tories of each dimension according to stage for two profiles of
individuals (women noncarrier of APOE 𝜖4 and with lower
educational level; men carrier of APOE 𝜖4 and with higher
educational level).

5.3.2 Temporal influence structure between
processes

Estimates of the matrix of temporal influences are given
in Table 3 and summarized in Figure 2 according to stage.
Figure 2 shows that the temporal influences between cere-
bral anatomy (𝚲𝑨), cognitive ability (𝚲𝑪 ), and functional
autonomy (𝚲𝑭 ) evolve from healthy stage to Alzheimer’s
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T A B L E 3 Estimates of the temporal influences between cerebral anatomy, cognitive ability, and functional autonomy in ADNI1 using a
discretization step of 3 months

Parameter Estimate SE P-value
Influence on cerebral anatomy
Effect of cerebral anatomy Intercept 𝛼0

𝐴𝐴
–0.145 0.034 <.001

MCI 𝛼1
𝐴𝐴

0.020 0.018 .271

dAD 𝛼2
𝐴𝐴

0.002 0.025 .946

Effect of cognitive ability Intercept 𝛼0
𝐴𝐶

0.014 0.015 .377

MCI 𝛼1
𝐴𝐶

0.048 0.018 .008

dAD 𝛼2
𝐴𝐶

0.058 0.027 .030

Effect of functional autonomy Intercept 𝛼0
𝐴𝐹

0.015 0.031 .627

MCI 𝛼1
𝐴𝐹

–0.023 0.032 .478

dAD 𝛼2
𝐴𝐹

–0.040 0.037 .286

Influence on cognitive ability
Effect of cerebral anatomy Intercept 𝛼0

𝐶𝐴
0.267 0.078 <.001

MCI 𝛼1
𝐶𝐴

0.016 0.060 .792

dAD 𝛼2
𝐶𝐴

–0.049 0.080 .535

Effect of cognitive ability Intercept 𝛼0
𝐶𝐶

–0.548 0.148 <.001

MCI 𝛼1
𝐶𝐶

0.171 0.055 .002

dAD 𝛼2
𝐶𝐶

0.115 0.076 .132

Effect of functional autonomy Intercept 𝛼0
𝐶𝐹

0.168 0.096 .079

MCI 𝛼1
𝐶𝐹

–0.030 0.097 .760

dAD 𝛼2
𝐶𝐹

–0.034 0.113 .766

Influence on functional autonomy
Effect of cerebral anatomy Intercept 𝛼0

𝐹𝐴
0.113 0.045 .012

MCI 𝛼1
𝐹𝐴

0.022 0.053 .681

dAD 𝛼2
𝐹𝐴

–0.053 0.069 .441

Effect of cognitive ability Intercept 𝛼0
𝐹𝐶

0.110 0.049 .023

MCI 𝛼1
𝐹𝐶

0.021 0.053 .696

dAD 𝛼2
𝐹𝐶

0.082 0.072 .259

Effect of functional autonomy Intercept 𝛼0
𝐹𝐹

–0.605 0.133 <.001

MCI 𝛼1
𝐹𝐹

0.553 0.102 <.001

dAD 𝛼2
𝐹𝐹

0.403 0.106 <.001

F I G U R E 2 Temporal relationships estimated between cerebral anatomy (𝚲𝑨), cognitive ability (𝚲𝑪 ), and functional autonomy (𝚲𝑭 ) at healthy
(CN), MCI, and dAD stages. Arrows represent effects of one dimension on the change of another dimension. Only the effects identified from Table 3
with a significance level lower than 10% are reported: numbers indicate the estimate, and stars indicate the level of significance according to the
Wald test
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disease stage. At normal stage, cerebral dimension affects
significantly the change of cognitive and functional dimen-
sions while cognitive and functional dimensions tend to
have reciprocal temporal dependencies. From the MCI
stage, the three dimensions become strongly interdependent
with cognition as the central point: reciprocal temporal
relationships appear between the anatomical and cognitive
dimensions in addition to those between the functional
and cognitive dimensions. At the dAD stage, the influence
of the cerebral anatomy on functional autonomy and the
effect of functional dimension (probably through its social
component) on the cognitive dimension are attenuated and
no more significant.

When considering a discretization step of 1.5 months
instead of 3 months, the Akaike Information criterion did not
substantially differ (AIC = 29550.5 with 3 months and AIC
= 29547.1 with 1.5 months), and the results regarding the
temporal influence relationships remained the same (see Web
Table 5 of the Web Appendix C).

5.3.3 Goodness-of-fit of the model

We assessed the goodness-of-fit of the model by comparing
the subject-specific predictions with the observations of the
markers in their transformed scale. On the original data, the
predictions and observations, summarized by protocol visits
and displayed in Figure 3, were very close showing the good
fit of the model.

We also used a five-fold cross-validation technique to
avoid overoptimism in the predictions. Specifically, we split
the sample into five groups (each one containing 20% of the
subjects) and estimated the model using data from each com-
bination of four groups and computed the subject-specific
predictions on the remaining group. The predicted versus
observed trajectories obtained on the five remaining groups,
displayed in the Figure 3 of the Web Appendix C, confirmed
the good fit of the model to the data.

6 DISCUSSION

We proposed an original dynamic model to simultaneously
describe multivariate processes over time and retrieve tem-
poral relationships between the processes involved. Our
model aims to be a dynamic causal model except that we
relied on discrete time with difference equations (rather
than continuous time with differential equations) to largely
reduce the numerical problems, notably with a closed-form
likelihood.

This approach goes further in the evaluation of temporal
relationships compared to existing approaches such as DBN
or CLM, which quantify temporal associations by focusing on

the effect of a system on the subsequent level of the system at
the next visit. Two major differences are as follows:

1. we work at a latent process level to avoid biases in associ-
ation estimates due to the measurement error and to avoid
the necessity to rely on complete and/or balanced observa-
tions. The importance of assessing associations at a latent
process (or “true” error-free marker) level has been widely
documented in a related context: the association between
a longitudinal marker and a time-to-event (Rizopoulos,
2012).

2. we assess temporal relationships on the change of pro-
cesses rather than the state of the system at a subsequent
time. We can thus seek local dependence structures in line
with the dynamic approach to causality. Yet we acknowl-
edge that causal interpretation still has to be made cau-
tiously as it is always subject to a correct specification of
the statistical model.

One major simplifying assumption is the time discretiza-
tion. Fundamentally, causal relationships are to be explored at
an infinitesimal level and thus, a causal model is to be defined
in continuous time (Commenges & Gégout-Petit, 2009; Aalen
et al., 2016). However, in contrast with DBN and CLM dis-
crete approaches, our discretization does not correspond to
the visit process; it can be as precise as necessary. It only
aims to avoid the numerical complexities due to differential
equation modeling and provide a sensible understanding of
the rate of change which is modeled. We assessed in a sim-
ulation study the impact of the discretization on the underly-
ing time-continuous causal structure; we found that the type-
I error rates of the temporal influence parameters were not
altered by the use of a model in discrete time, provided the dis-
cretization step remained small in regard with the dynamics of
the disease under study. Indeed in our simulations and appli-
cation on AD, our discretization step was between 1.5 and 6
months while the disease progresses over decades (Amieva
et al., 2008; Jack et al., 2013). In addition to this numerical
assessment, we provided in the Supporting Information ana-
lytic approximate relationships between matrices of tempo-
ral influences defined in two discretization steps or in con-
tinuous and discrete time. In practice, we recommend to try
several reasonable discretization steps, assess the change in
goodness-of-fit and stability of the estimates, and retain the
most sensible discretization step as a compromise between
fit/stability and computational intensity.

Although presented in two parts, our structural model
belongs to the family of nonlinear mixed models with specific
mean and covariance structures which enable the estimation
of temporal associations. Thus our estimation by maximum
likelihood benefits from the same properties as mixed mod-
els. In particular, it handles imbalanced data and relies on the
assumption that missing data (intermittent and monotone) are
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F I G U R E 3 Mean transformed observed scores (plain lines) along with their 95% confidence interval (shadows) and corresponding mean
subject-specific predictions (crosses) by protocol visit. Columns refer to the group (controls CN, subjects with MCI and subjects diagnosed with
Alzheimer’s disease dAD). Rows refer to the markers (eg, memory score, language score, executive functioning score, mean hippocampal volume,
mean regional cortical thickness, and FAQ score) in their transformed scales (see Web Figure 3 for the plot of the estimated link functions between
the natural scale and the transformed scale)
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missing at random. This is realistic in ADNI 1 with its very
short follow-up (3 years max). However, in applications with a
longer follow-up, and notably in population-based cohorts, it
will be probably necessary to account for informative clinical
events, such as dementia and death in our context. In addi-
tion, in studies with a long follow-up, it may be reasonable to
assume that the structure of temporal influences evolves with
time. Our model can handle this as shown in the simulations.

The model was primarily motivated by the study of the
multiple alterations involved in the dementia process in the
elderly. Although there is a global agreement on the relevant
dimensions in AD, their relationships are still poorly under-
stood and a confusion persists between alterations due to nor-
mal aging and alterations due to pathological aging leading to
dementia. Thanks to the ADNI data that included subjects at
different clinical stages of dementia, we were able to exhibit
the global structure of dependences between cerebral, cogni-
tive, and functional domains in normal aging. We found out
that the main evolution in this structure due to the pathologi-
cal process towards dementia (in subjects with mild cognitive
impairment or diagnosed with AD) was on cognitive func-
tioning with some effect of cognitive functioning on change
in cerebral structure in addition to its effect on change in func-
tional structure. This application, which gives a first insight on
the possibilities of this dynamic model, could be now refined
by targeting specific brain regions (separating for instance
cortical thicknesses from hippocampal volume) and specific
cognitive functions (separating, for instance, memory from
executive functioning).

As a conclusion, we proposed here a new methodology
that may help identify temporal structures in multivariate lon-
gitudinal data. Although applied in dementia context, this
approach has potential to address unsolved questions in many
other chronic diseases where multiple processes and/or mark-
ers are in play. This is the case in other neurodegenerative dis-
eases (eg, Parkinson, multisystem atrophy, amyotrophic lat-
eral sclerosis) but also beyond, for instance in chronic renal
disease. The methodology could also help understand how
dynamic exposures relate with markers of disease progression
and disentangle in particular the direction of temporal associ-
ations when reverse causation (ie, changes in the exposure due
to early disease changes) may intervene.

ACKNOWLEDGMENTS
This work benefited from the support of the project SMALA
(ANR-15-CE37-0002) of the French National Research
Agency (ANR). Computer time was provided by the comput-
ing facilities MCIA (Mésocentre de Calcul Intensif Aquitain)
at the Université de Bordeaux and the Université de Pau et
des Pays de l’Adour. Data collection and sharing for this
project was funded by the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) (National Institutes of Health Grant U01

AG024904) and DOD ADNI (Department of Defense award
number W81XWH-12-2-0012). The investigators within the
ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writ-
ing of this report. A complete listing of ADNI investigators
can be found at http://adni.loni.usc.edu/wp-content/uploads/
how_to_apply/ADNI_Acknowledgement_List.pdf.

ORCID
Bachirou O. Taddé
https://orcid.org/0000-0003-1254-952X
Hélène Jacqmin-Gadda
https://orcid.org/0000-0002-7727-6625
Daniel Commenges
https://orcid.org/0000-0001-8988-9114
Cécile Proust-Lima
https://orcid.org/0000-0002-9884-955X

R E F E R E N C E S
Aalen, O., Røysland, K., Gran, J., Kouyos, R. and Lange, T. (2016). Can

we believe the DAGs? A comment on the relationship between causal
DAGs and mechanisms. Statistical Methods in Medical Research, 25,
2294–2314.

Aalen, O.O. and Frigessi, A. (2007). What can statistics contribute to a
causal understanding? Scandinavian Journal of Statistics 34, 155–
168.

Amieva, H., Le Goff, M., Millet, X., Orgogozo, J.M., Pérès, K.,
Barberger-Gateau, P., Jacqmin-Gadda, H. and Dartigues, J.F. (2008).
Prodromal Alzheimer’s disease: successive emergence of the clinical
symptoms. Annals of Neurology, 64, 492–498.

Commenges, D. and Gégout-Petit, A. (2009). A general dynamical statis-
tical model with causal interpretation. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 71, 719–736.

Dickerson, B.C., Bakkour, A., Salat, D.H., Feczko, E., Pacheco, J.,
Greve, D.N., Grodstein, F., Wright, C.I., Blacker, D., Rosas, H.D.,
Sperling, R.A., Atri, A., Growdon, J.H., Hyman, B.T., Morris, J.C.,
Fischl, B. and Buckner, R.L. (2008). The cortical signature of
Alzheimer’s disease: regionally specific cortical thinning relates to
symptom severity in very mild to mild ad dementia and is detectable
in asymptomatic amyloid-positive individuals. Cerebral Cortex, 19,
497–510.

Didelez, V. (2008). Graphical models for marked point processes based
on local independence. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 70, 245–264.

Donohue, M.C., Jacqmin-Gadda, H., Le Goff, M., Thomas, R.G.,
Raman, R., Gamst, A.C. and Beckett, L.A. (2014). Estimating long-
term multivariate progression from short-term data. Alzheimer’s &
Dementia, 10, S400–410.

Greenland, S. (2000). Causal analysis in the health sciences. Journal of
the American Statistical Association, 95, 286–289.

Hamaker, E.L., Kuiper, R.M. and Grasman, R.P. (2015). A critique of
the cross-lagged panel model. Psychological Methods, 20, 102.

Han, S.D., Gruhl, J., Beckett, L., Dodge, H.H. and Stricker, N.H. (2012).
Beta amyloid, tau, neuroimaging, and cognition: sequence modeling
of biomarkers for Alzheimer’s disease. Brain Imaging and Behavior,
6, 610–620.

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://orcid.org/0000-0003-1254-952X
https://orcid.org/0000-0003-1254-952X
https://orcid.org/0000-0002-7727-6625
https://orcid.org/0000-0002-7727-6625
https://orcid.org/0000-0001-8988-9114
https://orcid.org/0000-0001-8988-9114
https://orcid.org/0000-0002-9884-955X
https://orcid.org/0000-0002-9884-955X


TADDÉ ET AL. 899

Jack, C.R., Knopman, D.S., Jagust, W.J., Petersen, R.C., Weiner, M.W.,
Aisen, P.S., Shaw, L.M., Vemuri, P., Wiste, H.J., Weigand, S.D.,
Lesnick, T.G., Pankratz, V.S., Donohue, M.C. and Trojanowski,
J.Q. (2013). Tracking pathophysiological processes in Alzheimer’s
disease: an updated hypothetical model of dynamic biomarkers.
Lancet Neurology, 12, 207–216.

Kuiper, R.M. and Ryan, O. (2018). Drawing conclusions from cross-
lagged relationships: re-considering the role of the time-interval.
Structural Equation Modeling: A Multidisciplinary Journal, 25,
809–823.

Landau, S.M., Harvey, D., Madison, C.M., Koeppe, R.A., Reiman, E.M.,
Foster, N.L., Weiner, M.W. and Jagust, W.J. (2011). Associations
between cognitive, functional, and FDG-PET measures of decline in
AD and MCI. Neurobiology of Aging, 32, 1207–1218.

Marquardt, D.W. (1963). An algorithm for least-squares estimation
of nonlinear parameters. Journal of the Society for Industrial and
Applied Mathematics, 11, 431–441.

Mueller, S.G., Weiner, M.W., Thal, L.J., Petersen, R.C., Jack, C., Jagust,
W., Trojanowski, J.Q., Toga, A.W. and Beckett, L. (2005). The
Alzheimer’s disease neuroimaging initiative. Neuroimaging Clinics
of North America 15, 869–877.

Mungas, D., Harvey, D., Reed, B., Jagust, W.J., DeCarli, C., Beckett, L.,
Mack, W.J., Kramer, J.H., Weiner, M.W., Schuf, N. and Chui, H.C.
(2005). Longitudinal volumetric MRI change and rate of cognitive
decline. Neurology, 65, 565–571.

Park, L.Q., Gross, A.L., McLaren, D.G., Pa, J., Johnson, J.K., Mitchell,
M., Manly, J.J. and Alzheimers Disease Neuroimaging Initiative.
(2012). Confirmatory factor analysis of the ADNI neuropsychologi-
cal battery. Brain Imaging and Behavior 6, 528–539.

Pfeffer, R.I., Kurosaki, T.T., Harrah, C.H., Chance, J.M. and Filos, S.
(1982). Measurement of functional activities in older adults in the
community. Journal of Gerontology, 37, 323–329.

Prague, M., Commenges, D., Gran, J., Ledergerber, B., Young, J., Fur-
rer, H. and Thiebaut, R. (2017). Dynamic models for estimating the
effect of HAART on CD4 in observational studies: application to the
Aquitaine Cohort and the Swiss HIV Cohort Study. Biometrics 73,
294–304.

Proust-Lima, C., Amieva, H. and Jacqmin-Gadda, H. (2013). Analy-
sis of multivariate mixed longitudinal data: a flexible latent process
approach. British Journal of Mathematical and Statistical Psychol-
ogy, 66, 470–487.

Ramsay, J.O. (1988). Monotone regression splines in action. Statistical
Science, 3, 425–441.

Reitz, C. and Mayeux, R. (2014). Alzheimer’s disease: epidemiology,
diagnostic criteria, risk factors and biomarkers. Biochemistry &
Pharmacology, 88, 640–651.

Rizopoulos, D. (2012). Joint Models for Longitudinal and Time-to-Event
Data with Applications in R. CRC Biostatistics Series 6. Boca Raton,
FL: CRC Press.

Robitaille, A., Muniz, G., Piccinin, A.M., Johansson, B. and Hofer,
S.M. (2012). Multivariate longitudinal modeling of cognitive aging:
associations among change and variation in processing speed and
visuospatial ability. GeroPsych, 25, 15.

Soetaert, K., Petzoldt, T. and Setzer, R.W. (2010). Solving differential
equations in R: Package desolve. Journal of Statistical Software, 33,
1–25.

Song, L., Kolar, M. and Xing, E.P. (2009). Time-varying dynamic
Bayesian networks. In: Bengio, Y., Schuurmans, D., Lafferty, J.D.,
Williams, C.K.I., and Culotta, A. (Eds.) In Proceedings of the
22nd International Conference on Neural Information Process-
ing Systems (NIPS’09). USA: Curran Associates Inc., pp. 1732–
1740.

Voelkle, M.C., Gische, C., Driver, C.C. and Lindenberger, U. (2018).
The Role of time in the quest for understanding psychological mech-
anisms. Multivariate Behavioral Research, 53, 782–805.

Wimo, A., Guerchet, M., Ali, G.-C., Wu, Y.-T., Prina, A.M., Winblad, B.,
Jönsson, L., Liu, Z. and Prince, M. (2017). The worldwide costs of
dementia 2015 and comparisons with 2010. Alzheimer’s & Dementia,
13, 1–7.

SUPPORTING INFORMATION
Web Appendices, Tables, and Figures referenced in Sections 4
and 5 are available with this paper at the Biometrics website
on Wiley Online Library.

The estimation program is implemented in the R package
CInLPN (for Causal Inference in a Network of Latent Pro-
cesses). It can be downloaded at https://github.com/bachir
tadde/CInLPN.

How to cite this article: Taddé BO, Jacqmin-Gadda
H, Dartigues J-F et al. Dynamic modeling of
multivariate dimensions and their temporal
relationships using latent processes: Application to
Alzheimer’s disease. Biometrics. 2020;76:886–899.
https://doi.org/10.1111/biom.13168

https://github.com/bachirtadde/CInLPN
https://github.com/bachirtadde/CInLPN
https://doi.org/10.1111/biom.13168

